卷积神经网络(CNN)介绍07-正则化

L1正则化

L1范数是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)

(任何的规则化算子,如果他在Wi=0的地方不可微,并且可以分解为一个“求和”的形式,那么这个规则化算子就可以实现稀疏。)

既然L0可以实现稀疏,为什么不用L0,而要用L1呢?

个人理解一是因为L0范数很难优化求解(NP难问题),二是L1范数是L0范数的最优凸近似,而且它比L0范数要容易优化求解。 L1

L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优化求解特性而被广泛应用。

L2正则化

L2范数: 指向量各元素的平方和然后求平方根。它也不逊于L1范数,它有两个美称,在回归里面,有人把有它的回归叫岭回归Ridge Regression),有人也叫它“权值衰减weight decay”。强大功效是改善机器学习里面一个非常重要的问题:过拟合。

我们让L2范数的规则项W模的平方最小,可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。参数越多,模型越复杂,而越复杂的模型越容易过拟合。

我们让L2范数的规则项W模的平方2最小,可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。参数越多,模型越复杂,而越复杂的模型越容易过拟合。

L1与L2的对比

L1-norm(范数),也叫作最小绝对偏差(leastabsolute deviations, LAD),最小绝对误差(least absolute errors,LAE).

L2-norm(范数)也称为最小均方(least squares),它是最小化目标值yi和估计值f(xi)平方和。

L1L2

鲁棒性(Robustness):最小绝对值偏差的方法应用领域很广,相比最小均方的方法,它的鲁棒性更好,LAD能对数据中的异常点有很好的抗干扰能力,异常点可以安全的和高效的忽略,这对研究帮助很大。如果异常值对研究很重要,最小均方误差则是更好的选择。

对于L2-norm,由于是均方误差,如果误差>1的话,那么平方后,相比L-norm而言,误差就会被放大很多。因此模型会对样例更敏感。如果样例是一个异常值,模型会调整最小化异常值的情况,以牺牲其它更一般样例为代价,因为相比单个异常样例,那些一般的样例会得到更小的损失误差。

稳定性:LAD方法的不稳定属性意思是,对于一个书评调整的数据集,回归线可能会跳跃很大。这个方法对一些数据配置有连续的解决方法;可是,通过把数据集变小,LAD可以跳过一个有多个求解拓展区域的布局(one could “jump past” a configurationwhich has multiple solutions that span a region,这句翻译挺麻烦的,大家自己领会吧,我尽力了),再通过这个解决方案的区域后,LAD线有一个斜坡,可能和之前的线完全不同。相比较之下,最小均方解决方法是稳定的,对于任何晓得数据点的调整,回归线仅仅只稍微移动一下,回归参数就是数据的连续函数(continuousfunctions of the data)

L1L22

计算效率(Computational efficiency):L1-norm没有一个解析解(analytical solution),但是L2-nom有,这使得L2-norm可以被高效的计算。可是,L1-norm的解有稀疏的属性,它可以和稀疏算法一起用,这可以是计算更加高效。

稀疏性解释

来看看它们解的分布性:L

以二维情况讨论,上图左边是 L2 正则化,右边是 L1 正则化。从另一个方面来看,满足正则化条件,实际上是求解蓝色区域与黄色区域的交点,即同时满足限定条件和 Ein 最小化。对于 L2 来说,限定区域是圆,这样,得到的解 w1 或 w2 为 0 的概率很小,很大概率是非零的。

对于 L1 来说,限定区域是正方形,方形与蓝色区域相交的交点是顶点的概率很大,这从视觉和常识上来看是很容易理解的。也就是说,方形的凸点会更接近 Ein 最优解对应的 wlin 位置,而凸点处必有 w1 或 w2 为 0。这样,得到的解 w1 或 w2 为零的概率就很大了。所以,L1 正则化的解具有稀疏性。

扩展到高维,同样的道理,L2 的限定区域是平滑的,与中心点等距;而 L1 的限定区域是包含凸点的,尖锐的。这些凸点更接近 Ein 的最优解位置,而在这些凸点上,很多 wj 为 0。

( 对于正则化参数,若λ 很小,容易造成过拟合。相反,若 λ 过大容易造成欠拟合。详细解释见网页

打赏一个呗

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦